Combinatorial Aspects of Multiple Zeta Values

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Aspects of Multiple Zeta Values

Multiple zeta values (MZVs, also called Euler sums or multiple harmonic series) are nested generalizations of the classical Riemann zeta function evaluated at integer values. The fact that an integral representation of MZVs obeys a shuffle product rule allows the possibility of a combinatorial approach to them. Using this approach we prove a longstanding conjecture of Don Zagier about MZVs with...

متن کامل

Algebraic Aspects of Multiple Zeta Values

Multiple zeta values have been studied by a wide variety of methods. In this article we summarize some of the results about them that can be obtained by an algebraic approach. This involves “coding” the multiple zeta values by monomials in two noncommuting variables x and y. Multiple zeta values can then be thought of as defining a map ζ : H0 → R from a graded rational vector space H0 generated...

متن کامل

A Combinatorial Identity of Multiple Zeta Values with Even Arguments

Let ζ(s1, s2, · · · , sk;α) be the multiple Hurwitz zeta function. Given two positive integers k and n with k 6 n, let E(2n, k;α) be the sum of all multiple zeta values with even arguments whose weight is 2n and whose depth is k. In this note we present some generating series for the numbers E(2n, k;α).

متن کامل

Aspectsof Multiple Zeta Values

Multiple zeta values (MZVs, also called Euler sums or multiple harmonic series) are nested generalizations of the classical Riemann zeta function evaluated at integer values. The fact that an integral representation of MZVs obeys a shuue product rule allows the possibility of a combi-natorial approach to them. Using this approach we prove a longstanding conjecture of Don Zagier about MZVs with ...

متن کامل

Multiple Zeta Values

for any collection of positive integers s1, s2, . . . , sl. By definition, Lis(1) = ζ(s), s ∈ Z, s1 ≥ 2, s2 ≥ 1, . . . , sl ≥ 1. (4.2) Taking, as before for multiple zeta values, Lixs(z) := Lis(z), Li1(z) := 1, (4.3) let us extend action of the map Li : w 7→ Liw(z) by linearity on the graded algebra H (not H, since multi-indices are coded by words in H). Lemma 4.1. Let w ∈ H be an arbitrary non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 1998

ISSN: 1077-8926

DOI: 10.37236/1376